본문 바로가기

00/algorithm

Find First and Last Position of Element in Sorted Array (in Python)

반응형

Problem

Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].


Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]

Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]


Solution

  • Approach 1 : Linear Scan

Checking every index for target exhausts the search space, so it must work.

But its time complexity is \(O(n)\).


  • Approach 2 : Binary Search

Because the array is sorted, we can use binary search to locate the left and rightmost indices.



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution:
 
     def searchRange(self, nums, target) :
 
        n = len(nums)
        
        if n == 0 or (n==1 and target != nums[0]):
            return [-1-1]
 
        def search(arr, t):
 
            l, r = 0len(arr)
 
            while l<r :
 
                mid = (l+r)//2
                num = arr[mid]
 
                if num < t :
                    l = mid+1
                else :
                    r = mid
            
            return l
 
        start = search(nums, target)
 
        if start >= n or target != nums[start] : 
            return [-1-1]
 
        end = start + search(nums[start:], target+1)-1
 
        return [start, end]
cs



Complexity Analysis

•Time complexity : \(O(logn)\)

•Space complexity : \(O(1)\). All work is done in place, so the overall memory usage is constant.


Source

https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/

반응형

'0 > algorithm' 카테고리의 다른 글

Permutations (in Python)  (0) 2019.01.23
Spiral Matrix (in Python)  (0) 2019.01.23
Next Permutation (in Python)  (0) 2019.01.21
Swap Nodes in Pairs (in Python)  (0) 2019.01.21
Generate Parentheses (in Python)  (0) 2019.01.21